PP36723. Proposed by Rovsen Pirkuliev.

If x > 0, prove that $e^x + e^{-x} + \pi^x + \pi^{-x} > \frac{1}{\arctan e^x} + \frac{1}{\arctan \pi^{-x}}$ Solution by Arkady Alt, San Jose, California, USA. We will prove that for any $t \in \left(0, \frac{\pi}{2}\right)$ holds inequality $\tan t + \cot t > \frac{1}{t}$. Since $\tan t + \cot t = \frac{2}{\sin 2t}$ then $\tan t + \cot t > \frac{1}{t} \Leftrightarrow \frac{2}{\sin 2t} > \frac{1}{t} \Leftrightarrow 2t > \sin 2t$ where latter inequality holds because $x > \sin x$ for any $x \in (0, \pi)$. Then by replacing t in inequality $\tan t + \cot t > \frac{1}{t}$ with $\arctan e^x$ and $\arctan \pi^{-x}$ we obtain, respectively, $\tan(\arctan e^x) + \cot(\arctan e^x) > \frac{1}{\arctan e^x} \Leftrightarrow$ $e^x + e^{-x} > \frac{1}{\arctan e^x}$ and $\tan(\arctan \pi^x) + \cot(\arctan \pi^x) > \frac{1}{\arctan \pi^{-x}} \Leftrightarrow$ $\pi^{-x} + \pi^x > \frac{1}{\arctan \pi^{-x}}$. Hence, $e^x + e^{-x} + \pi^x + \pi^{-x} > \frac{1}{\arctan e^x} + \frac{1}{\arctan \pi^{-x}}$. For any a > 0 holds inequality $a^x + a^{-x} > \frac{1}{\arctan a^x}$.